21 research outputs found

    Spatial heterogeneity of habitat suitability for Rift Valley fever occurrence in Tanzania: an ecological niche modelling approach

    Get PDF
    Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania. Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values. Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001). The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with these characteristics

    Species composition, larval habitats, seasonal occurrence and distribution of potential malaria vectors and associated species of Anopheles (Diptera: Culicidae) from the Republic of Korea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Larval mosquito habitats of potential malaria vectors and related species of <it>Anopheles </it>from three provinces (Gyeonggi, Gyeongsangbuk, Chungcheongbuk Provinces) of the Republic of Korea were surveyed in 2007. This study aimed to determine the species composition, seasonal occurrence and distributions of <it>Anopheles </it>mosquitoes. Satellite derived normalized difference vegetation index data (NDVI) was also used to study the seasonal abundance patterns of <it>Anopheles </it>mosquitoes.</p> <p>Methods</p> <p>Mosquito larvae from various habitats were collected using a standard larval dipper or a white plastic larval tray, placed in plastic bags, and were preserved in 100% ethyl alcohol for species identification by PCR and DNA sequencing. The habitats in the monthly larval surveys included artificial containers, ground depressions, irrigation ditches, drainage ditches, ground pools, ponds, rice paddies, stream margins, inlets and pools, swamps, and uncultivated fields. All field-collected specimens were identified to species, and relationships among habitats and locations based on species composition were determined using cluster statistical analysis.</p> <p>Results</p> <p>In about 10,000 specimens collected, eight species of <it>Anopheles </it>belonging to three groups were identified: Hyrcanus Group - <it>Anopheles sinensis</it>, <it>Anopheles kleini</it>, <it>Anopheles belenrae</it>, <it>Anopheles pullus</it>, <it>Anopheles lesteri</it>, <it>Anopheles sineroides</it>; Barbirostris Group - <it>Anopheles koreicus</it>; and Lindesayi Group - <it>Anopheles lindesayi japonicus</it>. Only <it>An. sinensis </it>was collected from all habitats groups, while <it>An. kleini, An. pullus </it>and <it>An. sineroides </it>were sampled from all, except artificial containers. The highest number of <it>Anopheles </it>larvae was found in the rice paddies (34.8%), followed by irrigation ditches (23.4%), ponds (17.0%), and stream margins, inlets and pools (12.0%). <it>Anopheles sinensis </it>was the dominant species, followed by <it>An. kleini, An. pullus </it>and <it>An. sineroides</it>. The monthly abundance data of the <it>Anopheles </it>species from three locations (Munsan, Jinbo and Hayang) were compared against NDVI and NDVI anomalies.</p> <p>Conclusion</p> <p>The species composition of <it>Anopheles </it>larvae varied in different habitats at various locations. <it>Anopheles </it>populations fluctuated with the seasonal dynamics of vegetation for 2007. Multi-year data of mosquito collections are required to provide a better characterization of the abundance of these insects from year to year, which can potentially provide predictive capability of their population density based on remotely sensed ecological measurements.</p

    High Seroprevalence of Rift Valley Fever and Evidence for Endemic Circulation in Mbeya Region, Tanzania, in a Cross-Sectional Study

    Get PDF
    We describe a high seropositivity rate for Rift Valley fever virus, in up to 29.3% of tested individuals from the shore of Lake Malawi in southwestern Tanzania, and much lower rates from areas distant to the lake. Rift Valley fever disease or outbreaks have not been observed there in the past, which suggests that the virus is circulating under locally favorable conditions and is either a non-pathogenic strain, or that occasional occurrence of disease is missed. We were able to identify a low socio-economic status and cattle ownership as possible socio-economic risk factors for an individual to be seropositive. Environmental risk factors associated with seropositivity include dense vegetation, and ambient land surface temperatures which may be important for breeding success of the mosquitoes which transmit Rift Valley fever, and for efficient multiplication of the virus in the mosquito. Low elevation of the home, and proximity to Lake Malawi probably lead to abundant surface water collections, which serve as breeding places for mosquitoes. These findings will inform patient care in the areas close to Lake Malawi, and may help to design models which predict low-level virus circulation

    Social sciences research in neglected tropical diseases 2: A bibliographic analysis

    Get PDF
    The official published version of the article can be found at the link below.Background There are strong arguments for social science and interdisciplinary research in the neglected tropical diseases. These diseases represent a rich and dynamic interplay between vector, host, and pathogen which occurs within social, physical and biological contexts. The overwhelming sense, however, is that neglected tropical diseases research is a biomedical endeavour largely excluding the social sciences. The purpose of this review is to provide a baseline for discussing the quantum and nature of the science that is being conducted, and the extent to which the social sciences are a part of that. Methods A bibliographic analysis was conducted of neglected tropical diseases related research papers published over the past 10 years in biomedical and social sciences. The analysis had textual and bibliometric facets, and focussed on chikungunya, dengue, visceral leishmaniasis, and onchocerciasis. Results There is substantial variation in the number of publications associated with each disease. The proportion of the research that is social science based appears remarkably consistent (<4%). A textual analysis, however, reveals a degree of misclassification by the abstracting service where a surprising proportion of the "social sciences" research was pure clinical research. Much of the social sciences research also tends to be "hand maiden" research focused on the implementation of biomedical solutions. Conclusion There is little evidence that scientists pay any attention to the complex social, cultural, biological, and environmental dynamic involved in human pathogenesis. There is little investigator driven social science and a poor presence of interdisciplinary science. The research needs more sophisticated funders and priority setters who are not beguiled by uncritical biomedical promises

    The Hexamer Structure of the Rift Valley Fever Virus Nucleoprotein Suggests a Mechanism for its Assembly into Ribonucleoprotein Complexes

    Get PDF
    Rift Valley fever virus (RVFV), a Phlebovirus with a genome consisting of three single-stranded RNA segments, is spread by infected mosquitoes and causes large viral outbreaks in Africa. RVFV encodes a nucleoprotein (N) that encapsidates the viral RNA. The N protein is the major component of the ribonucleoprotein complex and is also required for genomic RNA replication and transcription by the viral polymerase. Here we present the 1.6 Å crystal structure of the RVFV N protein in hexameric form. The ring-shaped hexamers form a functional RNA binding site, as assessed by mutagenesis experiments. Electron microscopy (EM) demonstrates that N in complex with RNA also forms rings in solution, and a single-particle EM reconstruction of a hexameric N-RNA complex is consistent with the crystallographic N hexamers. The ring-like organization of the hexamers in the crystal is stabilized by circular interactions of the N terminus of RVFV N, which forms an extended arm that binds to a hydrophobic pocket in the core domain of an adjacent subunit. The conformation of the N-terminal arm differs from that seen in a previous crystal structure of RVFV, in which it was bound to the hydrophobic pocket in its own core domain. The switch from an intra- to an inter-molecular interaction mode of the N-terminal arm may be a general principle that underlies multimerization and RNA encapsidation by N proteins from Bunyaviridae. Furthermore, slight structural adjustments of the N-terminal arm would allow RVFV N to form smaller or larger ring-shaped oligomers and potentially even a multimer with a super-helical subunit arrangement. Thus, the interaction mode between subunits seen in the crystal structure would allow the formation of filamentous ribonucleocapsids in vivo. Both the RNA binding cleft and the multimerization site of the N protein are promising targets for the development of antiviral drugs

    Scrub typhus ecology: a systematic review of Orientia in vectors and hosts

    Get PDF
    Abstract Scrub typhus, caused by Orientia tsutsugamushi, is an important and neglected vector-borne zoonotic disease with an expanding known distribution. The ecology of the disease is complex and poorly understood, impairing discussion of public health interventions. To highlight what we know and the themes of our ignorance, we conducted a systematic review of all studies investigating the pathogen in vectors and non-human hosts. A total of 276 articles in 7 languages were included, with 793 study sites across 30 countries. There was no time restriction for article inclusion, with the oldest published in 1924. Seventy-six potential vector species and 234 vertebrate host species were tested, accounting for over one million trombiculid mites (‘chiggers’) and 83,000 vertebrates. The proportion of O. tsutsugamushi positivity was recorded for different categories of laboratory test and host species. Vector and host collection sites were geocoded and mapped. Ecological data associated with these sites were summarised. A further 145 articles encompassing general themes of scrub typhus ecology were reviewed. These topics range from the life-cycle to transmission, habitats, seasonality and human risks. Important gaps in our understanding are highlighted together with possible tools to begin to unravel these. Many of the data reported are highly variable and inconsistent and minimum data reporting standards are proposed. With more recent reports of human Orientia sp. infection in the Middle East and South America and enormous advances in research technology over recent decades, this comprehensive review provides a detailed summary of work investigating this pathogen in vectors and non-human hosts and updates current understanding of the complex ecology of scrub typhus. A better understanding of scrub typhus ecology has important relevance to ongoing research into improving diagnostics, developing vaccines and identifying useful public health interventions to reduce the burden of the disease.</jats:p

    Surveillance of dengue fever virus: A review of epidemiological models and early warning systems

    Get PDF
    Dengue fever is one of the world’s most important vector-borne diseases. The transmission area of this disease continues to expand due to many factors including urban sprawl, increased travel and global warming. Current preventative techniques are primarily based on controlling mosquito vectors as other prophylactic measures, such as a tetravalent vaccine are unlikely to be available in the foreseeable future. However, the continually increasing dengue incidence suggests that this strategy alone is not sufficient. Epidemiological models attempt to predict future outbreaks using information on the risk factors of the disease. Through a systematic literature review, this paper aims at analyzing the different modeling methods and their outputs in terms of accurately predicting disease outbreaks. We found that many previous studies have not sufficiently accounted for the spatio-temporal features of the disease in the modeling process. Yet with advances in technology, the ability to incorporate such information as well as the socio-environmental aspect allowed for its use as an early warning system, albeit limited geographically to a local scale

    Impact of climate change on livestock disease occurrences

    Full text link
    The first objective of this chapter is to review how climate change and climate variability may affect livestock diseases' occurrences while emphasizing how little the knowledge on the links between livestock diseases and climate change is. The review of the literature shows that most of the investigated diseases are zoonotic ones with few specific to livestock and, moreover, these diseases appeared to be dramatically affected by climate variability rather than by ongoing climate change. A second objective of this chapter is to introduce some new modelling tools that can help predict diseases' occurrences in space and in time in relation to climate variability and change, namely, environmental niche modelling, epidemiological modelling using R0 map and teleconnection modelling. A working example on cattle trypanosomiasis in China is given to illustrate teleconnection modelling by using data from the World Organization for Animal Health (OIE). The conclusion of this chapter stresses three points: the need to consider the entangled linkages between ecosystems, society and health of animals and humans; the need of elaborated scenarios of livestock diseases linked to climate change and variability, which necessitates to develop and improve the recording of livestock diseases; and the need to incorporate climate-mediated physiological responses into the programs that manage breeding genetic diversity. (Résumé d'auteur
    corecore